Breeding Criteria Are As Important As Your Verdict
Dogs are not our toys, we should not design them according to the current trends and play the Gods of Nature. Instead, we should establish fair dog breeding objectives to what we want to achieve in the upcoming litter.
A dog influenced by his parents’ genetic code may be great for you if he has blue eyes but disastrous for someone else who is after brown eyes. Your goals and judgments should be based on a combination of medical soundness and function, not beauty exclusively. The important of the features you were after in a puppy is a disaster if along with it, the puppy has inherited from a serious medical condition.
It is the dogs and the litter as a whole that really matters, not the exception, whether it be good or bad. The Beagle, Miss P, which won “Best in Show” at Westminster Dog Show comes from an award-winning dog heritage. (IMAGE CREDIT: REUTERS/Mike Segar)
Genetics expands the range of these two colors.
Many genes impact the color of a dog by manipulating these two basic pigments. The dog genome contains approximately 3 billion base pairs of DNA and thousands of genes, but only 8 genes in the dog are associated with coat color. The loci associated with coat color in dogs are:
A (agouti) locus. This site is responsible for different coat patterns in the dog. Agouti protein controls the release of melanin into the hair and is involved in switching between the two pigments (eumelanin and phaeomelanin).
E (extension) locus. This locus creates the black facial mask of many dogs as well as yellow or red coats. The four alleles of this gene in order of dominance are: melanistic mask (Em), grizzle (Eg), black (E) and red (e).
K (dominant black) locus. This gene controls dominant black, brindle, and fawn colors. This relatively new locus includes colorations previously linked to other genes like Agouti.
B (brown) locus. This locus is linked to brown, chocolate, and liver. There are two brown alleles, B (dominant brown) and b (recessive brown). It takes two recessives (bb) to dilute black pigment to brown. For dogs in the red or yellow pigment family (phaeomelanin), the brown allele can change the color of the nose and foot pads to brown.
D (dilute) locus. This genetic site is responsible for diluted pigment which lightens coats from black or brown to gray or blue or very pale brown. A mutation in the melanophilin (MLPH) gene is the cause of color dilution. The two alleles associated with dilution are D (dominant full color) and d (recessive dilute). It takes two recessives (dd) to lighten black pigment to gray or blue and red pigment to cream.
M (merle) locus. The mutation that causes merle in all its forms has been identified. This site creates coats of irregularly shaped patches of diluted pigment and solid color. Merle only dilutes eumelanin (black) pigment. Dogs with red or yellow pigment are not merle but can produce merle pups.
H (harlequin) locus. This site is associated with white dogs that have black patches and often interacts with the Merle locus to create different combinations of spots and colors.
S (spotting) locus. This locus is associated with interesting coat color patterns such as piebald, particolor, and extreme white which produce coats with less symmetrical white spots.
Each of these loci works alone or in conjunction with another locus to control the production and distribution of eumelanin and phaeomelanin. The combined efforts of all the loci determine the color of the dog. But a dog of one color may carry hidden colors in his gene pool that may appear in his/her pups. That is why you may have pups that are not mirror s of either parent.
The color of a dog’s coat is basically at the mercy of his gene pool. Genes do two things that determine a dog’s appearance. They control the pigments produced (eumelanin and phaeomelanin) and where these pigments are produced. Genes rule by telling some cells to make eumelanin, others to make phaeomelanin, and still others to make no pigment whatsoever. Genes can even tell a cell to switch gears and change from the production of eumelanin to phaeomelanin to create a hair that is both black and red!
Although it sounds like color may be determined by a roll of the dice, Mendel showed us years ago that genetics is a science that controls an organism’s characteristics…even the color of a dog. And with a sound knowledge of genetics, dominant vs. recessive genes, mutations, and possible alleles, predicting the color of puppies is a statistical probability. From two pigments comes multiple variations in canine coat color… and that is what makes your dog unique!
Which traits does a puppy inherit from its parent?Fur color, pattern, and eye color all are inherited from the parents of an animal. These are not things he has learned or likes to do; these are traits that he was born with.
What do babies inherit from their mother?
All living things inherit their traits from their parents, whether it’s a person’s height, a dog’s coat type, or a flower’s petal color. Traits aren’t copied with 100% accuracy from parent to offspring, though. Since traits are inherited from both parents, all sorts of mixing and matching can occur on the genetic level. The environment can play a big role as well. There are many complex factors that determine the variation between parents and offspring, but we’ll take a look at more simple traits that are affected by Mendelian inheritance.
In the nineteenth century, Gregor Mendel conducted a wide array of experiments using pea plants in the garden of his monastery. Over the course of eight years, he looked at how the plants developed as he cross-fertilized them with each other. His observations and theories, though not appreciated during his lifetime, were rediscovered in the early 20th century and were critical in the development of modern evolutionary biology